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Abstract
We study the two-band degenerate Hubbard model using the fluctuation
exchange approximation (FLEX) and compare the results with quantum Monte
Carlo (QMC) calculations. Both the self-consistent and the non-self-consistent
versions of the FLEX scheme are investigated. We find that, unlike in the one-
band case, in the multiband case, good agreement with the quantum Monte
Carlo results is obtained within the electron–electron T -matrix approximation
using the full renormalization of the one-particle propagators. The crossover
to strong coupling and the formation of satellites is more clearly visible in the
non-self-consistent scheme. Finally we discuss the behaviour of the FLEX for
higher orbital degeneracy.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent progress in the development and application of advanced experimental techniques made
available a number of new materials and compounds with strongly correlated electrons that
cannot be entirely described within the density functional theory (DFT) [1, 2]. Some transition
metal alloys, cuprates, manganites, heavy-fermion Kondo and mixed-valence systems, as well
as lanthanides and transuranium compounds, behave in a way that can neither be explained
nor understood within first-principles computational schemes based on local approximations
of the correlation–exchange potential in the DFT. It is necessary to take dynamical fluctuations
explicitly into account to describe these materials. This can be done best and in a manageable
way within the dynamical mean-field theory (DMFT) [3]. The DMFT captures most of the
relevant local quantum dynamical effects of electron correlations. Recent progress in the
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development of various impurity solvers for the DMFT has opened a way for combining
advanced many-body techniques with ab initio methods to build realistic computational
schemes for materials with strongly correlated electrons.

The standard way of combining ab initio calculations with the DMFT is via multiorbital
Hubbard models. The input parameters for multiorbital Hubbard models to be solved within
the DMFT are determined from ab initio calculations, for example using the linearized muffin-
tin orbital (LMTO) method [4]. No universal scheme for solving the DMFT equations exactly
does exist. Hence, one has to resort to approximate impurity solvers to reach quantitative results
from the DMFT. We distinguish essentially two kinds of DMFT solvers: numerical schemes
and analytical methods based on many-body perturbation theory. The former schemes aim
at numerically exact quantitative solutions while the latter aim at analytically controllable
schemes. Although analytic methods are not quantitatively as accurate as the numerical
solutions, they have an appealing feature in that they offer an analytically controllable approach
with direct access to spectral functions on the real frequency axis. Analytic approaches are
needed in most situations to complement the numerical solutions so that we can assess the peak
structure of spectral functions when performing analytic continuation of numerical results from
the imaginary axis of Matsubara frequencies. To gain confidence in approaches based on many-
body perturbation theory we should test them in simpler situations and compare their results
with available more precise numerical simulations.

In the context of the one-band model, extensive comparisons between perturbative
approaches such as the iterated perturbation theory (IPT) and the QMC method have been
carried out (see, for example, [5, 3]). It appeared that the non-self-consistent IPT is a rather
accurate approximation. Analytic extension of the IPT and second-order perturbation theory
via multiple two-particle scatterings, the FLEX, has already been applied to iron and nickel
in self-consistent and non-self-consistent forms [6, 7]. However, a critical discussion of the
accuracy of this method in multiband situations and comparison with e.g. QMC results have
not yet been carried out. It is the aim of this paper to fill this void, and compare diagrammatic
schemes with dynamical fluctuations based on two-particle scatterings with finite-temperature
quantum Monte Carlo solution of the DMFT. To this end we use a multiorbital Hubbard model
with a simplified kinetic energy so that we can focus our attention on the fundamental features
of the transition between weak and strong electron couplings in multiorbital Hubbard models.

A typical form of the Hamiltonian used in dynamical extensions of DFT schemes is

H Hubb =
∑

Rλ,R′λ′
tRλ,R′λ′a†

RλaR′λ′ +
∑

R,λ,λ′λ′′λ′′′
〈Rλ, Rλ′|V |Rλ′′Rλ′′′〉a†

Rλa†
Rλ′ aRλ′′′aRλ′′, (1)

where R are lattice site coordinates and λ = (lσ) are spin–orbital indices. The hopping term
tRλ,R′λ′ is determined from ab initio electronic structure calculations and will be replaced in
this comparison study with a model dispersion relation diagonal in the spin–orbital indices.
The electron interaction is usually considered only between the d electrons, since the effect of
the lower orbitals is assumed to be described quite well within the standard DFT. We assume
that the local interaction consists only of direct and exchange terms. We approximate the
interaction operator with two parameters only: the Hubbard U and the exchange constant J .
In homogeneous cases (without disorder) we can neglect the lattice coordinate and represent
the interaction only with a quadruple of spin–orbital indices:

〈iσ jσ ′|V |kσ lσ ′〉 ≈ δikδ jl(1 − δi jδσσ ′)U + δilδ jk(1 − δi j)δσσ ′ J. (2)

This representation can easily be further simplified to a standard matrix in the spin–orbital
indices

vλλ′ = (1 − δλλ′)(U − Jδσσ ′). (3)
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We use this representation of the electron interaction in our many-body treatment of the
multiorbital Hubbard model.

2. Methods

2.1. Many-body dynamical fluctuations

The effects of the electron interaction on one-particle states are described by the self-energy
�λ. Dynamical fluctuations are contained in the two-particle vertex function �λλ′ . We denote
the four-momenta as k = (k, iωn) and q = (q, iνm), and use the Schwinger–Dyson equation
to relate the two-particle vertex to the one-particle self-energy. With representation (3) for the
electron interaction we can write

�λ(k)=
∑
λ′

1

β N

∑
k′

vλλ′ Gλ′(k ′)
[

1 − 1

β N

∑
q

Gλ(k − q)Gλ′(k ′ − q)�λλ′(k − q; q, k ′ − k)

]
.

(4)

The first term on the rhs of equation (4) is the static Hartree term expressing the self-energy in
terms of densities. This term in realistic calculations is normally part of the static local density
approximation fixing the static particle densities. We hence suppress the Hartree term and use
only the vertex contribution to the self-energy as a generator of dynamical fluctuations missing
in the DFT.

The simplest approximation to the vertex function �λλ′ is the bare interaction vλλ′ . Such
an approximation corresponds to second-order perturbation theory (SOPT). The vertex is
momentum independent. Even in more advanced approximations we will not use the full
momentum dependence of the vertex function. In our treatment we resort only to multiple
scatterings of two quasiparticles (FLEX) [8]. In this situation the two-particle vertex depends
on only a single bosonic four-momentum q . This dependence enters the vertex function via a
two-particle bubble. When we deal with multiple electron–hole scatterings the bubble is

	λλ′(q) = 1

β N

∑
k

Gλ(k)Gλ′(k + q). (5)

The self-energy due to dynamical electron–hole (multiple) scatterings can then be represented
as

�eh
λ (k) =

∑
λ′

1

β N

∑
q

vλλ′ Gλ′(k + q)	λλ′(q)�eh
λλ′(q). (6)

In second-order perturbation theory, �eh
λλ′ = vλλ′ . When we sum ladder electron–hole

diagrams we obtain for the vertex function the following representation:

�eh
λλ′(q) = vλλ′

1 + vλλ′	λλ′(q)
. (7)

To visualize the above equations we show corresponding diagrams for the vertex �eh of the
particle–particle type shown in the top row of figure 1 and the corresponding contribution to
the self-energy is shown in the bottom row of figure 1. Note that a small square in all diagrams
(figures 1–3) represents the antisymmetrized pair interaction (see [9]).

Analogously we can construct an approximation with multiple electron–electron
scatterings where the self-energy can be represented as

�ee
λ (k) =

∑
λ′

1

β N

∑
q

vλλ′ Gλ′(q − k)
λλ′(q)�ee
λλ′(q). (8)
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Figure 1. The particle–hole (top row) vertex �eh which appears in the FLEX approximation; the
definition of the FLEX self-energy constructed with the help of the particle–hole vertex (bottom
row).

Figure 2. The particle–particle (top row) vertex �ee which appears in the FLEX approximation;
the definition of the FLEX self-energy constructed with the help of the particle–particle vertex
(bottom row).

Figure 3. The particle–hole vertex �v corresponding to the third scattering channel is given in the
top row. The definition of the corresponding self-energy is presented in the bottom row.

Here we have to use a particle–particle bubble


λλ′(q) = 1

β N

∑
k

Gλ(k)Gλ′(q − k). (9)

The two-particle vertex �ee
λλ′ has the same solution as the electron–hole scattering function,

equation (7), where we just replace the bubble 	 with 
 . The corresponding set of diagrams
for the vertex �ee and the self-energy is presented in figure 2.

The third channel of two-particle scatterings is the interaction channel where the electron
interaction is screened by electron–hole polarization bubbles. The dynamical self-energy due
to this renormalization is then represented as

�v
λ(k) =

∑
λ′

1

β N

∑
q

vλλ′ Gλ′(k + q)	λλ′(q)�v
λλ′(q), (10)
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with

�v
λλ′(q) = vλλ′ −

∑
λ′′

vλλ′′	λ′′λ′′(q)�v
λ′′λ′(q). (11)

Corresponding diagrams are presented in figure 3. We can treat each channel independently or
add all three channels to assess the effect of dynamical fluctuations on the electron self-energy.
In the latter case, however, we have to subtract twice the contribution from the second order,
since it is identical in all three channels.

The idea of the DMFT is to neglect the momentum dependence of the one-electron
propagators in the contributions to the self-energy. We hence use only the local parts of
the one-electron propagators, i.e., Gλ(k, iωn) → N−1 ∑

k Gλ(k, iωn) = Gλ(iωn). Then, all
the above formulae hold with the replacements k → iωn , q → iνm for fermionic and bosonic
momenta, respectively.

The advantage of analytic approaches with multiple two-particle scatterings is the
knowledge of the explicit analytic structure of the self-energy. Hence all the above results
can be explicitly analytically continued to real frequencies using a straightforward procedure.
We explicitly mention only the result for the two-particle electron–hole bubble:

	λλ′(z) = −
∫ ∞

−∞
dω

π
f (ω − µ) [Gλ′(ω + z) Im Gλ(ω+) + Gλ(ω − z) Im Gλ′(ω+)] . (12)

Up to now we have used the fully renormalized one-electron propagators in the perturbation
theory as demanded by conservation laws. However, when we are interested in the one-electron
properties of the system, we can relax the demands of thermodynamic consistency and replace
the fully renormalized propagator with a partially renormalized one:

G−1(z) −→ G−1
0 (z) = G−1(z) + �(z) + µ̃, (13)

where in the expression for G0 we used an additional shift of the impurity level to satisfy
Luttinger’s theorem following [10]. This propagator goes over into the bare propagator in
the atomic limit and does not contain long energy tails due to frequency convolutions in the
definition of the self-energy.

This partially non-self-consistent scheme resembles IPT. Hence a better description of the
transition from weak to strong coupling regimes at the one-particle level, including the metal–
insulator transition (MIT), is expected from the IPT than from the conserving scheme with
fully renormalized propagators, where the metal–insulator transition at half-filling is known
to be missing.

2.2. The quantum Monte Carlo case

Among many methods used to solve the impurity problem we choose the quantum Monte
Carlo method [11] to benchmark FLEX as a potential candidate impurity solver. There are
well known advantages and disadvantages of the QMC method and our choice is spurred by
the fact that despite being slower than other methods, the QMC approach is a well controlled,
numerically exact method. As an input the QMC procedure has the Weiss function G0(τ ) and
as an output it produces the Green function G(τ ). We remind the reader of the major steps
taken in the QMC procedure. Usually one starts with an impurity effective action S:

Seff = −
∫ β

0
dτ dτ ′ ∑

α

c†
α(τ )G0

−1
α (τ, τ ′)cα(τ ′) + 1

2

∫ β

0
dτ

∑
α,α′

Uαα′ nα(τ )nα′(τ ), (14)

where {c, c†} are fermionic annihilation and creation operators of the lattice problem,
α = {m, σ }.
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The first thing we should do with the action (14) is to discretize it in imaginary time with
time step �τ so that β = L�τ , and L is the number of time intervals:

Seff →
∑
α,ττ ′

c†
α(τ )G0

−1
α (τ, τ ′)cα(τ ′) + 1

2

∑
α,α′

Uαα′ nα(τ )nα′(τ ). (15)

The next step is to get rid of the interaction term U by replacing it by summation over
Ising-like auxiliary fields. The decoupling procedure is called the Hubbard–Stratonovich
transformation [12, 13]:

exp{−�τ {Uαα′ nαnα′ − 1
2 (nα + nα′)}} = 1

2

∑
Sαα′=±1

exp{λαα′ Sαα′ (nα − nα′)}, (16)

where cosh λαα′ = exp(
�τUαα′

2 ) and Sαα′ (τl) are auxiliary Ising fields at each time slice.
In the one-band Anderson impurity model we have only one auxiliary Ising field

S(τl) = ±1 at each time slice, whereas in the multiorbital case the number of auxiliary fields
is equal to the number of α, α′ pairs. Applying the Hubbard–Stratonovich transformation at
each time slice we bring the action into a quadratic form with the partition function

Z = Tr{Sαα′(τ )}
∏
α

det G−1
α,{Sαα′(τ )}, (17)

where the Green function in terms of auxiliary fields G−1
α reads

G−1
α,{Sαα′ }(τ, τ

′) = G0
−1
α (τ, τ ′)eV − (eV − 1)δτ,τ ′, (18)

with the interaction matrix

V α
τ =

∑
α′( �=α)

λαα′ Sαα′ (τ )σαα′ , (19)

where

σαα′ =
{

+1 for α < α′

−1 for α > α′.

Once the quadratic form is obtained, one can apply Wick’s theorem at each time slice
and perform the Gaussian integration in Grassmann variables to get the full interacting Green
function:

Gα(τ, τ ′) = 1

Z
Tr{Sαα′ } Gα,{Sαα′ }(τ, τ ′)

∏
α′

det G−1
α′,{Sαα′ }. (20)

To evaluate the summation in equation (20) one uses Monte Carlo stochastic sampling. The
product of determinants is interpreted as the stochastic weight and auxiliary spin configurations
are generated by a Markov process with probability proportional to their statistical weight. A
more rigorous derivation can be found elsewhere [3, 13].

Since the QMC method produces results on the imaginary time axis (G(τm) with
τm = m�τ , m = 1 . . . L) and the DMFT self-consistency equations make use of the frequency
dependent Green functions and self-energies, we must have an accurate method to compute
Fourier transformations from the time to the frequency domain. This is done by representing
the functions in the time domain by cubic splined functions which should go through the
original points with the condition of continuous second derivatives imposed. Once we know
the cubic spline coefficients we can compute the Fourier transformation of the splined functions
analytically.
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3. Results and discussion

To compare analytic solutions with numerical ones, we employed a simple model with two
degenerate bands, i.e., four spin orbitals per site, and assumed a semi-elliptic density of states
(DOS), ρ0(E) = 2

π

√
1 − E2. For simplicity we resorted to the case J = 0 and non-magnetic

solutions. We tested second-order perturbation theory together with multiple scatterings from
the electron–hole and electron–electron interaction channels. Both types of self-consistency
were considered, i.e., the full conserving and the partial one with the bath function G0, defined
in the IPT equation (13). All approximations were analytically continued to real frequencies
before being evaluated numerically. The maximum entropy method was used for analytical
continuation to the real axis. We tested the maximum entropy method against other high-
frequency, more reliable methods such as the non-crossing approximation and the one-crossing
approximation and found satisfactory agreement, understandable within the limitations of all
methods used. A simple iteration procedure with a suitably chosen mixing of the old and
new self-energy led to well converged results for moderate values of the pair interaction U .
The details of the numerical implementation of multiorbital FLEX-type approximations were
described elsewhere [6, 7, 14–16].

First, we compared the analytical approximations among themselves for an intermediate
value of the interaction strength, U = 2. All energies are given in units of the half-bandwidth
of the non-interacting DOS, D = 1. We also wrote two different FLEX programs on
real and imaginary axes and used 9000 and 4096 points on the corresponding frequency
domain with large enough frequency cut-off (10D) for temperature T = 1/16. Using the
conserving full self-consistency we found that results from SOPT and the electron–electron
T -matrix approximation, TMA, are quite close to each other. The addition of the electron–hole
TMA channel changes the result significantly. The quasiparticle width becomes substantially
reduced, as shown in figure 4. This strong band narrowing is unphysical. We did not include
the third channel, screening by the electron–hole polarization bubbles, explicitly in this figure,
since it contributes quantitatively and qualitatively similarly to the electron–hole ladder. The
reason that the electron–hole scatterings do not improve at second order is quite clear. At
the mean-field level an instability towards the local moment state with non-zero 〈n↑〉 − 〈n↓〉
appears at some critical interaction. This instability is totally artificial because the conduction
electrons screen the local moment (Kondo effect). In the non-self-consistent FLEX approach
including both electron–electron and electron–hole TMA, this instability also occurs when
the denominator in the above equation contains a pole at zero frequency, for example for the
two-band Hubbard model with the half-bandwidth equal to the one the instability happens at,
U = 0.7, for temperature T = 1/16. So the presence of this artificial instability will push
the results obtained by the non-self-consistent FLEX approach including electron–hole TMA
away from the right answer. For the self-consistent FLEX approach including electron–hole
TMA, the instability happens for U slightly larger than two for the same model, indicating a
tendency towards a phase transition from the paramagnetic to a ferromagnetic solution in the
lattice case which is unphysical for the impurity problem. Thus, this unphysical divergence
overestimates the contribution of the electron–hole scatterings and the result worsens with
increasing interaction strength. To improve on this, one can use Kanamori’s [17] observation
that the particle–hole bubbles should interact not with the bare interaction but with an effective
one screened by the particle–particle ladder, i.e. replace U by Ueff equal to the electron–electron
T -matrix taken at zero frequency.

As is known from the single-band situation, neither of the FLEX-type approximations is
able to trace the emergence of satellite Hubbard bands and the metal–insulator transition. The
high-energy spectrum is shapeless and broadened due to energy convolutions. This situation
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Figure 4. Densities of states for U = 2, n = 2 (half-filled
case) calculated within the second-order perturbation
theory (dot–dashed curve), electron–electron TMA (solid
curve), and electron–hole TMA (dashed curve). The one-
particle propagators are fully renormalized in the self-
consistent calculations (� = �[G]).

Figure 5. Densities of states for U = 2, n = 2 (half-filled
case) calculated within the second-order perturbation
theory (solid curve), the electron–electron TMA (dashed
curve), and the electron–hole TMA (dot–dashed curve).
The one-particle propagators are partially renormalized
by using the iterated perturbation method (� = �[G0]).

changes dramatically if we keep only the topological self-consistency of the one-particle
propagators obtained from the IPT; see figure 5. We can see that second order and the electron–
electron TMA produces the Hubbard satellite bands in their correct positions. The SOPT
scatterings add an additional internal structure to the satellite bands. While the satellite bands
gain more weight than they actually have at this interaction strength, the central quasiparticle
peak weight is strongly reduced in non-self-consistent or partly self-consistent approximations.
Too much quasiparticle weight is transferred to the Hubbard bands.

In the electron–hole scattering channel we get slight changes in the positions of the
Hubbard bands, and a slight decrease of the quasiparticle width. Even for rather weak
interactions U < 1 one observes nearly total disappearance of the quasiparticle peak when
including the electron–hole scattering channel. Due to this unphysical behaviour at moderate
electron coupling and the instability towards the local state formation, we leave the electron–
hole scattering channel out of further considerations. There is no way at the FLEX level to
improve upon the results from the electron–electron scattering channel. The best we could do
was to add contributions from all three distinct channels. But we have to subtract the second-
order contribution to the self-energy which dominates at moderate and intermediate couplings
so that we obtain a negative density of states at the Fermi energy. The only real improvements
can be reached via a new self-consistent coupling of the electron–electron and electron–hole
channels of the parquet type. Since we are not yet able to implement parquet-type self-
consistency in multiorbital models and have to stay within FLEX, we compare only results of
analytical approximations based on second-orderperturbation theory and the electron–electron
T -matrix approach against QMC data.

To compare the analytic FLEX results with quantum Monte Carlo simulations, we use
both versions of the self-consistency. In figure 6 the density of states at U = 1 calculated
within the electron–electron T -matrix approximation is shown along with the one deduced
from the QMC approach. As one can see from the plot, the conserving TMA fits better to
the quasiparticle peak than the TMA with the IPT bath Green function G0. In addition, the
IPT TMA seems to overemphasize the role of the satellite peaks at weak coupling, as there
are no satellites in the QMC solution for this coupling strength. If we increase the interaction
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Figure 6. Densities of states for U = 1.0, n = 2
(half-filled case) calculated within the electron–electron
TMA using the full renormalization of the one-particle
propagators (dashed curve) and partial renormalization
using the IPT (dot–dashed curve) compared with the
result from the quantum Monte Carlo method (solid
curve).

Figure 7. Densities of states for U = 2.0, n = 2
(half-filled case) calculated within the electron–electron
TMA using the full renormalization of the one-particle
propagators (dashed curve) and partial renormalization
using the IPT (dot–dashed curve) compared with the
result from the quantum Monte Carlo method (solid
curve).

to U = 2 (see figure 7) and compare the same curves as in the previous plot, we notice that
the conserving TMA still reproduces the quasiparticle peak very well, whereas the IPT TMA
retains the tendency of reducing the central peak in favour of the satellites. At this coupling
the satellites are formed also in the QMC solution but not as strongly as the IPT TMA predicts.
Notice that the positions of the satellites reproduced by the IPT solution are rather close to the
ones coming from the QMC approach.

As a summary of the FLEX for the symmetric case of the multiband Hubbard model we
present the dependence of the quasiparticle residue, Z , on the interaction strength, U . It is
clear that the closer the Z(U) curve for a particular approximation to the QMC data, the better
the approximation works in reproducing the quasiparticle properties of the system, including
the central peak weight and width. In figure 8 we present the following curves: QMC data are
plotted as a solid curve with open circle symbols; the results from the second-order perturbation
theory in the cases of fully renormalized one-particle propagators in the self-consistent calcu-
lations (� = �[G]) and ones partially renormalized by using the iterated perturbation method
(� = �[G0]) are given by dashed and dot–dashed curves respectively. Concentrating on small
and intermediate values of the interaction, we can see that in the first case of the full renormal-
ization of the propagators the situation is significantly better, as the dashed curve is much closer
to the QMC one than the dot–dashed curve. The electron–electron TMA gives even better
results than those obtained from SOPT. Both the electron–electron TMA curves, for the case of
the full self-consistency (� = �[G]), plotted as a solid curve, and the partial one (� = �[G0]),
plotted as a dotted curve, lie much closer to the QMC data than the SOPT curves (for interac-
tions smaller than or equal to U = 2). From the two electron–electron TMA curves we make a
decision in favour of the one obtained using the fully renormalized one-particle propagators in
the self-consistency procedure. This result differs from the findings in the case of the one-band
Hubbard model, where partially renormalized propagators gave better agreement with Monte
Carlo results. Note that the FLEX-type approximations follow the Monte Carlo quasiparticle
weight only for weak and moderate interaction strengths, U � 2. All approximations except
for the IPT go wrong near and beyond the expected metal–insulator transition.
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Figure 8. The dependence of the quasiparticle residue Z on the Coulomb repulsion U calculated
within the electron–electron TMA (solid and dotted curves) and the second-order perturbation
theory (dashed and dot–dashed curves) using the full renormalization of the one-particle propagators
and partial renormalization using the IPT respectively. QMC results are plotted as a solid curve
with circle symbols.

In figure 9 we study the dependence of the DOS, calculated by different methods, on the
orbital degeneracy. We calculated the DOS within two- and three-band Hubbard models
in the half-filled case using the QMC approach as the tester against the two best FLEX
approximations which we found,namely, the electron–electron TMA with full self-consistency
(� = �[G]) and the partial one (� = �[G0]). One can almost immediately notice the main
difference between the QMC and FLEX results. The width of the quasiparticle (QP) peak in
the QMC calculation slightly increases with the degeneracy. This is to be expected as, while
the degeneracy grows, the critical U also increases, which takes the curve for the Z versus
U dependence (see figure 8) higher for larger degeneracy at any particular repulsion. As an
example, the quasiparticle residue against repulsion at U = 2 for degeneracy N = 6 will
be above the curve in figure 8 corresponding to degeneracy N = 4. FLEX results show the
opposite dependence: the QP width decreases with increasing degeneracy. We should also
note that this wrong tendency is stronger for the partial (IPT) self-consistency. The reason for
such behaviour can lie in the limited set of diagrams treated in FLEX, resulting in insufficient
screening for higher degeneracy.

The self-consistent FLEX scheme was found to reproduce quite well the central
quasiparticle peak for two and three bands at weak and medium interaction strengths. It
is, however, important to stress that this cannot persist to very large degeneracy. It has been
shown [18] that in the exact solution of the DMFT equations for large N the critical U at which
the Mott transition takes place at zero temperature scales linearly with N . This implies that
for fixed U the quasiparticle residue, which has an approximate expression Z = 1 − U/Uc2,
increases and eventually approaches unity with increasing orbital degeneracy. This remarkable
screening effect in the multiorbital degenerate Hubbard model is not captured by the FLEX
approach, which displays the opposite trend, as can be seen in figure 10.

When we move off the electron–hole symmetric case, the situation changes. The
quasiparticle peak is no longer as strongly suppressed in the electron–hole scattering channels.
Moreover, the conserving TMA starts to develop a satellite peak. Figure 11 demonstrates this
trend for n = 0.8. We perceive almost no difference in the form of the central peak between
the two different self-consistent versions of the multiple electron–electron scatterings. The
IPT version retains its tendency to overemphasize the width of the satellite peaks and produces
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Figure 9. Densities of states for U = 2.0, n = 2 in the two-band model (solid curves) and n = 3 in
the three-band model (dashed curves)—both cases corresponding to the half-filled case—calculated
within the electron–electron TMA using the full renormalization of the one-particle propagators
(upper panel) and partial renormalization using the IPT (middle panel) compared with the result
from the quantum Monte Carlo method (lower panel).

an incorrect position of the upper Hubbard band. The conserving TMA shows a shoulder
behaviour where the QMC approach displays the hole satellite. The less pronounced electron
peak cannot be traced either in the IPT TMA or in the conserving TMA.

To explore a wider range of parameters away from half-filling, we plot the quasiparticle
residue dependence on the filling in figure 12. With the incrementation of filling n, the
scattering rate is increased as the number of particles which can scatter a particular electron
in the system grows. Therefore it is natural to expect reduction of the quasiparticle residue as
a function of n at least for filling n < 1. As one can see from the plot, the relative positions
of the curves are not changed in comparison with figure 8 and one reaches the conclusion that
the electron–electron TMA fits best to the QMC data. In addition, one can conclude that for
densities n < 1 both methods (the self-consistent and the non-self-consistent electron–electron
TMA) work very well for describing QMC data, while for n > 1 we observe a deviation of
FLEX from QMC data indicating the necessity of taking into account other scattering channels.
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Figure 10. Densities of states for U = 2.0 (n is kept at half-filling) calculated within the
electron–electron TMA using the full renormalization of the one-particle propagators for different
degeneracies (see the legend).
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Figure 11. Densities of states for U = 2.0, n = 0.8 (partially filled band) calculated within
the electron–electron TMA using the full renormalization of the one-particle propagators (dashed
curve) and partial renormalization using the IPT (dot–dashed curve) compared with the result from
the quantum Monte Carlo method (solid curve).

The minima in Z(n) at n = 1 and 2 observed in QMC data become even more pronounced
with increasing U and indicate the trace of the metal–insulator transition which appears for the
two-band Hubbard model at U ≈ 3.5, as one can see from figure 8. As we mentioned above,
the FLEX fails to reproduce the MIT, which is also reflected in an almost monotonic decrease
of the quasiparticle weight for all densities including the interval between n = 1 and 2.

We mention in passing that the one-band situation is exceptional because the exact
evaluation of the one-particle Green function shows that the interaction is not efficiently
screened. Therefore, the non-self-consistent version of SOPT works well. Furthermore, in the
one-band case, the SOPT form combined with the DMFT self-consistency condition produces
the correct atomic limit [3]; this is not the case in the degenerate situation. In the multiorbital
case, the effective interaction becomes more screened with increasing degeneracy. The self-
consistent version of FLEX attempts to capture this effect, and in fact it does it slightly better
than the self-consistent SOPT. The non-self-consistent version of SOPT is less good because
it does not screen the interaction at all.
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Figure 12. The dependence of the quasiparticle residue Z on the filling n for U = 1 calculated
within the electron–electron TMA (solid and dotted curves) and the second-order perturbation
theory (dashed and dot–dashed curves) using the full renormalization of the one-particle propagators
and partial renormalization using the IPT respectively. QMC results are plotted as a solid curve
with circle symbols.

4. Conclusion

In summary, we compared a multiband implementation of the FLEX procedure within the
framework of the two-band model with a semi-elliptic non-interacting DOS against the
quantum Monte Carlo method. The results obtained indicate that the best agreement with
the QMC data is reached for the electron–electron TMA and with fully renormalized one-
particle propagators, � = �[G]. This conclusion is restricted to small energies within the
quasiparticle peak and to the region of moderate Coulomb interaction (U � 2). Our finding is
somewhat different from that for the one-band Hubbard model, where the best match for the
same interaction strengths was found for the one-particle propagators partially renormalized
by using the iterated perturbation method (� = �[G0]). In the multiband situation for band
degeneracy that is not high and small to intermediate U , the self-consistent version describes
the quasiparticle features in good agreement with the QMC approach. On the other hand, there
is no hint in the self-consistent calculation of an incipient Mott transition, as in the one-band
case [19], while the non-self-consistent scheme clearly gives a hint that a Mott transition will
take place, albeit at a very small unphysical value of U , due to an inappropriate screening of
this interaction.

Insufficient screening due to the limited set of diagrams treated in FLEX results in a
quasiparticle weight underestimation with increasing degeneracy in the system. For the non-
symmetric case, FLEX has a tendency to overestimate the QP width and underestimate the
Hubbard band weight, given their correct position in the case of the conserving TMA. Our
results, found for an impurity solver used within the DMFT, have a wider range of validity as
they are naturally applicable to the multiorbital Anderson model as well.
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[6] Drchal V, Janiš V and Kudrnovský J 1999 Electron Correlations and Materials Properties ed A Gonis et al (New

York: Kluwer–Academic/Plenum) p 273
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